首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54336篇
  免费   4797篇
  国内免费   4606篇
电工技术   14061篇
综合类   3441篇
化学工业   6471篇
金属工艺   13568篇
机械仪表   2195篇
建筑科学   2491篇
矿业工程   909篇
能源动力   1316篇
轻工业   533篇
水利工程   894篇
石油天然气   3554篇
武器工业   321篇
无线电   4406篇
一般工业技术   4862篇
冶金工业   2236篇
原子能技术   835篇
自动化技术   1646篇
  2024年   142篇
  2023年   768篇
  2022年   1236篇
  2021年   1645篇
  2020年   1712篇
  2019年   1500篇
  2018年   1344篇
  2017年   2096篇
  2016年   2103篇
  2015年   2222篇
  2014年   3269篇
  2013年   3212篇
  2012年   3855篇
  2011年   4479篇
  2010年   3377篇
  2009年   3660篇
  2008年   3043篇
  2007年   3816篇
  2006年   3500篇
  2005年   2783篇
  2004年   2507篇
  2003年   2100篇
  2002年   1685篇
  2001年   1472篇
  2000年   1271篇
  1999年   1024篇
  1998年   751篇
  1997年   651篇
  1996年   532篇
  1995年   465篇
  1994年   375篇
  1993年   266篇
  1992年   226篇
  1991年   136篇
  1990年   116篇
  1989年   112篇
  1988年   65篇
  1987年   47篇
  1986年   30篇
  1985年   22篇
  1984年   28篇
  1983年   15篇
  1982年   17篇
  1981年   15篇
  1980年   17篇
  1979年   6篇
  1978年   7篇
  1975年   2篇
  1959年   8篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
21.
22.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
23.
The hot corrosion Type II of the alloys FeCr20, FeCr20Ni10, FeCr20Ni20, and FeCr20Co10 is investigated at 700°C in air + 0.5% SO2 with deposits consisting of Na2SO4 and a eutectic mixture of Na2SO4 and MgSO4 for 24, 100, and 300 h. The alloying elements nickel and cobalt have a positive influence when tests are conducted using a MgSO4‐Na2SO4 deposit. In this case, they reduce the metal loss and increase the time to the propagation stage. In contrast, when the alloys are exposed with a Na2SO4 deposit, these alloying elements increase the metal loss and allow for the transition to the propagation stage because they can form molten phases with the Na2SO4. During the incubation stage an oxide scale forms on the FeCr20 alloy, which is thicker than the one formed during exposure without a deposit, and iron oxides are observed, which precipitate in the deposit. The propagation stage occurs by a dissolution and precipitation mechanism forming localized pitting attack. Iron is the main species that dissolves and precipitates, while chromium remains mainly as an oxide beneath the initial surface. The additional elements are found in the pit and in the salt deposit.  相似文献   
24.
25.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
26.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
27.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
28.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
29.
The mechanical property of age‐hardenable Al‐alloys is governed by the state of ageing, which determines the microstructure and consequently, their corrosion behavior which is a vital aspect for a number of applications. This article presents a comparative assessment of corrosion behavior of under‐, peak‐ and over‐aged Al‐Mg‐Si alloy. Corrosion characteristics have been determined via immersion tests in 0.1 M ortho‐phosphoric acid solution and intergranular corrosion (IGC) tests. Corroded surfaces are examined by field emission scanning electron micrographs‐energy dispersive spectroscopy and 3D optical profilometer. The obtained results reveal that the corrosion rate at a specific immersion time as well as the depth of IGC increases in the order for under‐, peak‐, and over‐aged states. Irrespective of the state of ageing, corrosion loss increases linearly but the rate of corrosion decreases rapidly with increasing immersion time. The dominant mode of corrosion in under‐aged alloy is identified as localized pitting, while peak‐aged is highly susceptible to IGC in contrast extensive pitting corrosion is observed for over‐aged alloy. The observed differences in corrosion behavior are explained considering characteristics of precipitates. Formation of β (Mg2Si) in case of over‐aged alloy and presence of inclusions like AlFeMnSi particles are found to accelerate pitting corrosion.  相似文献   
30.
In this work, the pulsed hollow cathode discharges at low pressure argon with an axial magnetic field were studied. The results indicate that the pulsed discharge is operated in an enhanced glow(EG) mode. Under the same conditions, the discharge current of the pulsed discharge is two or three orders higher than that of the direct current discharge. The spatial and temporal evolution of the light emission shows that, the current fluctuation at the rising edge of the pulse plays an important role for the EG discharge of pulsed hollow cathode, which forms a high-density, highcurrent and long-distance plasma column outside the cavity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号